Tuberin regulates the DNA repair enzyme OGG1.

نویسندگان

  • Samy L Habib
  • Daniel J Riley
  • Lenin Mahimainathan
  • Basant Bhandari
  • Goutam Ghosh Choudhury
  • Hanna E Abboud
چکیده

The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. The TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. We investigated a potential role for tuberin in regulating a key DNA repair pathway. Downregulation of tuberin in human renal epithelial cells using siRNA resulted in a marked decrease in the abundance of the 8-oxoG-DNA glycosylase (OGG1). Mouse embryonic fibroblasts deficient in tuberin (TSC2(-/-) and TSC2(+/-)) also had markedly decreased OGG1 mRNA and protein expression, as well as undetectable OGG1 activity accompanied by accumulation of 8-oxodG. Gel shift analyses and chromatin immunoprecipatation identified the transcription factor NF-YA as a regulator of OGG1 activity. The binding of NF-YA to the OGG1 promoter was significantly reduced in TSC2(-/-) compared with TSC2(+/+) cells. Introduction of TSC2 cDNA into the tuberin-deficient cells restored NF-YA and OGG1 expression. Transcriptional activity of the OGG1 promoter was also decreased in tuberin-null cells. In addition, mutation of both CAAT boxes, the sites to which NF-YA binds, completely inhibits OGG1 promoter activity. These data provide the first evidence that tuberin regulates a specific DNA repair enzyme, OGG1. This regulation may be important in the pathogenesis of kidney tumors in patients with TSC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel mechanism of regulation of the DNA repair enzyme OGG1 in tuberin-deficient cells.

Tuberin (protein encodes by tuberous sclerosis complex 2, Tsc2) deficiency is associated with the decrease in the DNA repair enzyme 8-oxoG-DNA glycosylase (OGG1) in tumour kidney of tuberous sclerosis complex (TSC) patients. The purpose of this study was to elucidate the mechanisms by which tuberin regulates OGG1. The partial deficiency in tuberin expression that occurs in the renal proximal tu...

متن کامل

Molecular mechanism of regulation of OGG1: tuberin deficiency results in cytoplasmic redistribution of transcriptional factor NF-YA

The tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors, both angiomyolipomas and renal cell carcinomas. On the other hand, mice-deficient in the DNA repair enzyme OGG1 spontaneously develop adenoma and carcinoma. Downregulation of tuberin results in a mark...

متن کامل

Mechanism of Oxidative DNA Damage in Diabetes

OBJECTIVE To investigate potential mechanisms of oxidative DNA damage in a rat model of type 1 diabetes and in murine proximal tubular epithelial cells and primary culture of rat proximal tubular epithelial cells. RESEARCH DESIGN AND METHODS Phosphorylation of Akt and tuberin, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) levels, and 8-oxoG-DNA glycosylase (OGG1) expression were measured in k...

متن کامل

OGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage

Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...

متن کامل

Mechanism of Oxidative DNA damage in diabetes: tuberin inactivation and downregulation of DNA repair enzyme OGG1

This is an uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association, publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 294 1  شماره 

صفحات  -

تاریخ انتشار 2008